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1. Framework materials
« Topology + chemistry

2. Formation studies
« Capabilities of in-situ experiments
« Extracting quantitative information

3. Case studies 20/ °
« Lithium tartrate polymorphism (1=0.24 A)
« ZIF-8 non-linear crystallisation
« Zn/Cd-ZIF-8 nanoparticles 5
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Framework materials

Metal-organic framework

Hybrid inorganic-organic
(MOF) perovskite (HIOP)

« Magnetic, dielectric, electronic, optical and mechanical properties.

« (Gas adsorption, catalytic, sensing, guest-dependent properties.
* Plenty more!

[COF figures] Adapted from R. Luo et al., Nat. Commun. 2021, 12, 6808.
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Net topology
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Metal-organic framework
(MOF)

» Topology underpins dimensionality, magnetism, electronic properties etc.
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Chemical building blocks
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 Metal cation

. « Metal cation « Organic monomers
* Organic linker i i
* Inorganic anion * Guest molecules
* Guest molecules . :
« Organic cation (extra-framework) « Solvent molecules

« Solvent molecules

> Interactions between components are key to structure formation.
» Energy scale and dynamics of the interactions determine feasible synthesis conditions.




Structure — property — application
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Metal-organic framework

(MOF) Gas sorption-induced strain Gas sensing

» Framework structure and properties can be tuned via building block substitution.

Hamish H.-M. Yeung, G. Yoshikawa, K. Minami, K. Shiba, J. Mater. Chem. A. 2020, 8, 18007-18014. Yeung



Why study formation?

Control over synthesis Materials design & discovery

Particle size
Local structure
Rational design

« Phase purity
« Reproducibility
« Scale-up efficiency

[Figure, left] SCG Chemicals, Thailand

[Figure, right] Adapted from “SpinachRuBisCO.png” under a CC BY-SA 4.0 licence, Wikipedia.org user Ericlin1337.
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Ex-situ vs. in-situ investigation

Ex-situ
Analysis outside of synthesis
environment

In-situ
Analysis during synthesis

Phase behaviour

Meta-stable intermediates

Information Polqurphlsm_ | Real kinetics
Approximate kinetics
. Requires modification of experiment
Challenges Susceptible to artefacts, e.g., Use of non-standard facilities

phase changes

Resolution can be limited
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In-situ (bulk) experimental methods

Information Timescale

Diffraction Long-range order

Small-angle scattering Scattering contrast

Total scattering Local structure (all sample)

X-ray absorption spectroscopy Local structure (element-specific)
Nuclear magnetic resonance spectroscopy | Nuclear environments
Other spectroscopy (IR, Raman...) Bonding environments
Other (pH, light scattering, colorimetry...) | various
» Localised techniques also exist, e.g., transmission electron microscopy, atomic force microscopy.
« Other techniques can be performed in time-resolved fashion, e.g., mass spectrometry. Yeung o
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Quantitative kinetics

Avrami model:[1]

a = {1 —exp[—(kgxt)™G]}

« Assumes random homogeneous nucleation of one phase in another.
« Growth rate, kg, is independent of extent of transformation.
« Exponent, ng, reflects the nature and dimensionality of growth.

Gualtieri model:[2

q = 1 X {1 — exp[—(kgxt)"G]}

" trenp|(— (- k) /o)

« Separates contributions from nucleation (N) and growth (G).
» Produces a nucleation probability distribution: (t—=1/kp)?

PN = e 2b2

[1] M. Avrami, J. Chem. Phys, 1939, 8, 1103-1112; J. Chem. Phys., 1940, 8, 212-224.
[2] A. F. Gualtieri, Phys. Chem. Miner. 2001, 28, 719-728.

[Figure] Reproduced from “Avrami equation.svg” under a CC BY 2.5 licence, Wikipedia.org user Michael Schmid.



Chemical insight

Density functional theory

i O C
» Relative energies of different products. o
. T n(S),]** 2
Pre-nucleation equilibrium models:['] ned - [Zn(mImH),]
. Accognt fo_r changing chemistry of the g g
reaction mixture. o o
» Can output variables for experimental
monitoring, e.g., concentrations of ]}
individual species, yield, pH etc. N k,
« Require validation with experimental “n A "“ImH O —
observations. H* 4  Solvent @
[Zn(mIm),(S);]
/ N\
[1] H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, R. Pallach, N®

N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin. Angewandte Chemie, International Edition 2019, 58, 566-571



MOF formation with in-situ X-ray diffraction
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For more on Diamond: www.diamond.ac.uk/Public/How-Diamond-Works.html Group 3



Case study 1



Ex-situ: phase behaviour of
lithium tartrate, Li,(C,H,O)

Ligandisomer Temperature (°C) Solvent Key
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H. H.-M. Yeung, A. K. Cheetham, Dalton Transactions 2014, 43, 95-102.




Computation: energetics of
lithium tartrate, Li,(C,H,O)
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Yeung, M. Kosa, M. Parrinello, P. M. Forster, A. K. Cheetham, Crystal Growth and Design 2011, 11, 221-230. \616

H. H.-M.
H. H.-M. Yeung, M. Kosa, M. Parrinello, A. K. Cheetham, Crystal Growth and Design 2013, 13 (8), 3705-3715. S



In-situ: successive crystallisations
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H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. |. Walton gﬁhéﬁ%‘”& \617
Angewandte Chemie, International Edition 2016, 55, 2012-2016. NIMS > 5
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Peak intensity (integrated counts)
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Angewandte Chemie, International Edition 2016, 55, 2012—2016.
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Case study 2



ZIF-8 formation

[Zn*],/ M Mike Yue Wu
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H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser,
S. Henke, R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin
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Pre—nucleation equilibria

1. Coordination

A@i@i Aok

[Zn(mImH),]**

[Zn(S)a1**

2. Deprotonation
P 2 8 8
‘e ‘e

v Zn* A mImH O BN

H = Solvent @

[Zn(mIm),(S),]

>
3. Crystal growth

H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke,
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin
Angewandte Chemie, International Edition 2019, 58, 566-571




Model vs. experiment

L exp. 0.
I =
2
=
1 2
G as
y Q,
0.10 M calc.{ ] e
O # 0 61 © O 10.0M
0 2 4 6 -10 0 10 10°
t/sx10° t/s
In-situ X-ray diffraction In-situ pH monitoring

[Copasi programme] S. Hoops, et al., Bioinformatics 2006, 22, 3067—-3074.
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Low concentration / high pH
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|. H. Lim, F. Schiith et al., Chem. Mater. 2015 A
7n> mImH O

H = Solvent

[Zn(mIm)y(S),]

H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke,
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin
Angewandte Chemie, International Edition 2019, 58, 566-571




High concentration / low pH
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Total scattering Zn* A mImH 6

M. Terban, S. J. L. Billinge et al., Nanoscale. 2018

H = Solvent @
[Zn(mIm)y(S),]
H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, \’g\
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin Yeung 25

Angewandte Chemie, International Edition 2019, 58, 566-571 Group o



Case study 3



Mixed-component Zn/Cd-ZIF-8
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[1] A. F. Sapnik, H. H.-M. Yeung, A. L. Goodwin, et al., Chem. Commun. 2018, 54, 9651-9654.
[2] K. W. P. Orr, S. M. Collins, A. L. Goodwin, H. H.-M. Yeung et al., Chemical Science 2021, 12, 4494—-4502.
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Core—shell nanoparticles

Sean Andrew
Collins Goodwin
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K. W. P. Orr, S. M. Collins, E. M. Reynolds, F. Nightingale, H. Bostrom, S. J. Cassidy, D. Dawson, \’g\
S. E. Ashbrook, O. V. Magdysyuk, P. A. Midgley, A. L. Goodwin, H. H.-M. Yeung Yeung 28
Chemical Science 2021, 12, 4494—-4502. Group oy °



Formation mechanism
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K. W. P. Orr, S. M. Collins, E. M. Reynolds, F. Nightingale, H. Bostrom, S. J. Cassidy, D. Dawson, \’g\
S. E. Ashbrook, O. V. Magdysyuk, P. A. Midgley, A. L. Goodwin, H. H.-M. Yeung Yeung 29
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Summary

1. Framework materials
« Topology + chemistry

2. Formation studies
« Capabilities of in-situ experiments
« Extracting quantitative information

3. Case studies 20/ °
« Lithium tartrate polymorphism (1=0.24 A)
« ZIF-8 non-linear crystallisation
« Zn/Cd-ZIF-8 nanoparticles 5
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The future is more than average

Reactor Sensor
o
o
\owC
R
Mixed components!'-2] Bulk structure Phase separation[?]

[1] H. Deng, O. Yaghi et al., Science 2010, 327, 846—850.
[2] Adapted from “SpinachRuBisCO.png” under a CC BY-SA 4.0 licence, Wikipedia.org user Ericlin1337. Yeung
[3] K. Hirai, S. Kitagawa et al., Angew. Chem. 2011, 50, 8057-8061. Group
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