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1. Framework materials
• Topology + chemistry

2. Formation studies
• Capabilities of in-situ experiments
• Extracting quantitative information

3. Case studies
• Lithium tartrate polymorphism
• ZIF-8 non-linear crystallisation
• Zn/Cd-ZIF-8 nanoparticles



Framework materials
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Hybrid inorganic-organic 
perovskite (HIOP)

Metal–organic framework
(MOF)

Covalent organic framework 
(COF)

• Magnetic, dielectric, electronic, optical and mechanical properties.
• Gas adsorption, catalytic, sensing, guest-dependent properties.
• Plenty more!

[COF figures] Adapted from R. Luo et al., Nat. Commun. 2021, 12, 6808.



Net topology
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Hybrid inorganic-organic 
perovskite (HIOP)

Metal–organic framework
(MOF)

Covalent organic framework 
(COF)

vertices (nodes) + edges (linkers)

Ø Topology underpins dimensionality, magnetism, electronic properties etc.



Chemical building blocks
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• Metal cation
• Organic linker
• Guest molecules
• Solvent molecules

• Metal cation
• Inorganic anion
• Organic cation (extra-framework)

• Organic monomers
• Guest molecules
• Solvent molecules

= ==

Ø Interactions between components are key to structure formation.
Ø Energy scale and dynamics of the interactions determine feasible synthesis conditions.



Structure – property – application
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Metal–organic framework
(MOF) Gas sorption-induced strain Gas sensing

Hamish H.-M. Yeung, G. Yoshikawa, K. Minami, K. Shiba, J. Mater. Chem. A. 2020, 8, 18007–18014.

Ø Framework structure and properties can be tuned via building block substitution.



Why study formation?
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• Particle size
• Local structure
• Rational design

• Phase purity
• Reproducibility
• Scale-up efficiency

[Figure, left] SCG Chemicals, Thailand
[Figure, right] Adapted from “SpinachRuBisCO.png” under a CC BY-SA 4.0 licence, Wikipedia.org user Ericlin1337.

Control over synthesis Materials design & discovery



Framework formation



Ex-situ vs. in-situ investigation
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Ex-situ
Analysis outside of synthesis 

environment

In-situ
Analysis during synthesis

Information
Phase behaviour
Polymorphism
Approximate kinetics

Meta-stable intermediates
Real kinetics

Challenges Susceptible to artefacts, e.g., 
phase changes 

Requires modification of experiment
Use of non-standard facilities
Resolution can be limited

Yeung
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In-situ (bulk) experimental methods
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Information Timescale

Diffraction Long-range order

Small-angle scattering Scattering contrast

Total scattering Local structure (all sample)

X-ray absorption spectroscopy Local structure (element-specific)

Nuclear magnetic resonance spectroscopy Nuclear environments

Other spectroscopy (IR, Raman…) Bonding environments

Other (pH, light scattering, colorimetry…) various

Yeung
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• Localised techniques also exist, e.g., transmission electron microscopy, atomic force microscopy.
• Other techniques can be performed in time-resolved fashion, e.g., mass spectrometry.



Quantitative kinetics
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[1] M. Avrami, J. Chem. Phys, 1939, 8, 1103-1112; J. Chem. Phys., 1940, 8, 212–224. 
[2] A. F. Gualtieri, Phys. Chem. Miner. 2001, 28, 719–728.
[Figure] Reproduced from “Avrami equation.svg” under a CC BY 2.5 licence, Wikipedia.org user Michael Schmid.
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Gualtieri model:[2]

• Separates contributions from nucleation (N) and growth (G).
• Produces a nucleation probability distribution:

Avrami model:[1]

• Assumes random homogeneous nucleation of one phase in another.
• Growth rate, kG, is independent of extent of transformation.
• Exponent, nG, reflects the nature and dimensionality of growth.
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Chemical insight
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Density functional theory

• Relative energies of different products.

Pre-nucleation equilibrium models:[1]

• Account for changing chemistry of the 
reaction mixture.

• Can output variables for experimental 
monitoring, e.g., concentrations of 
individual species, yield, pH etc. 

• Require validation with experimental 
observations.

[Zn(mIm)2(S)2]

[Zn(mImH)4]2+
[Zn(S)4]2+

[1] H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, R. Pallach, 
N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin. Angewandte Chemie, International Edition 2019, 58, 566-571
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MOF formation with in-situ X-ray diffraction

Beamline I12 - JEEP

X-ray 
detector

High energy
synchrotron 
X-rays

Yeung
Research GroupFor more on Diamond: www.diamond.ac.uk/Public/How-Diamond-Works.html

Thermocouple

Reaction vessel (modified culture 
tube)

Heating block

Hotplate stirrer

Sample stage



Case study 1
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Ex-situ: phase behaviour of 
lithium tartrate, Li2(C4H4O6)

H. H.-M. Yeung, A. K. Cheetham, Dalton Transactions 2014, 43, 95–102.

Tony Cheetham

7

6

Kinetic?

Thermodynamic?
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Computation: energetics of 
lithium tartrate, Li2(C4H4O6)

7

6

H. H.-M. Yeung, M. Kosa, M. Parrinello, P. M. Forster, A. K. Cheetham, Crystal Growth and Design 2011, 11, 221–230.
H. H.-M. Yeung, M. Kosa, M. Parrinello, A. K. Cheetham, Crystal Growth and Design 2013, 13 (8), 3705–3715.

Monica 
Kosa

Metastable phase

Thermodynamic product
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In-situ: successive crystallisations
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Richard 
Walton

H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton
Angewandte Chemie, International Edition 2016, 55, 2012–2016.
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Kinetics

Gualtieri model fitting:
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H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton
Angewandte Chemie, International Edition 2016, 55, 2012–2016.
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Energy landscape

Gualtieri model fitting:
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H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton
Angewandte Chemie, International Edition 2016, 55, 2012–2016.
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+ computed 
relative energies



Case study 2



ZIF-8 formation
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I-43m

Yue WuMike 
Gaultois

H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, 
S. Henke, R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin 
Angewandte Chemie, International Edition 2019, 58, 566-571

ZIF-8 
Zn(2-methylimidazolate)2



Pre-nucleation equilibria

[Zn(mIm)2(S)2]

[Zn(mImH)4]2+
[Zn(S)4]2+
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H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, 
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin 
Angewandte Chemie, International Edition 2019, 58, 566-571

1. Coordination

2. Deprotonation

3. Crystal growth



Model vs. experiment
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[Copasi programme] S. Hoops, et al., Bioinformatics 2006, 22, 3067–3074.

Adam 
Sapnik

Felicity 
Massingberd-

Mundy
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In-situ X-ray diffraction In-situ pH monitoring



[Zn(mIm)2(S)2]

[Zn(mImH)4]2+
[Zn(S)4]2+

Low concentration / high pH
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H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, 
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin 
Angewandte Chemie, International Edition 2019, 58, 566-571

Fast crystallisation

Mass spectrometry
I. H. Lim, F. Schüth et al., Chem. Mater. 2015



[Zn(mIm)2(S)2]

[Zn(mImH)4]2+
[Zn(S)4]2+

High concentration / low pH

25Yeung
Research Group

H. H.-M. Yeung, A. F. Sapnik, F. Massingberd-Mundy, M. W. Gaultois, Y. Wu, D. X. Fraser, S. Henke, 
R. Pallach, N. Heidenreich, O. Magdysyuk, N. T. Vo, A. L. Goodwin 
Angewandte Chemie, International Edition 2019, 58, 566-571

Slow 
crystallisation

Total scattering
M. Terban, S. J. L. Billinge et al., Nanoscale. 2018



Case study 3



Mixed-component Zn/Cd-ZIF-8

[1] A. F. Sapnik, H. H.-M. Yeung, A. L. Goodwin, et al., Chem. Commun. 2018, 54, 9651–9654.
[2] K. W. P. Orr, S. M. Collins, A. L. Goodwin, H. H.-M. Yeung et al., Chemical Science 2021, 12, 4494–4502.

Thermodynamic conditions[1]
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Kinetic conditions[2]

Kieran 
Orr

Adam 
Sapnik

I11



Core–shell nanoparticles

ν = 0.1

ν = 1.0
ac

rc
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K. W. P. Orr, S. M. Collins, E. M. Reynolds, F. Nightingale, H. Boström, S. J. Cassidy, D. Dawson,
S. E. Ashbrook, O. V. Magdysyuk, P. A. Midgley, A. L. Goodwin, H. H.-M. Yeung
Chemical Science 2021, 12, 4494–4502.

$ % = $) + '
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Conc grad
60 C Concentration gradient model

T = 60 ℃
xrxn = 0.1

Concentration gradient model
T = 60 ℃
xrxn = 0.5

rwp = 5.53

Sean 
Collins

ac Lattice parameter at interface | σ Range of lattice parameters | rc Nominal interface radius | ν Diffuseness

Cd ZnCd Zn

40 °C
xrxn 

Cd ZnCd Zn

40 °C
xrxn = 0.5

= 0.5

(a) (b) (c) (d)

30 nm

STEM–EDS

Cd Zn

Andrew 
Goodwin



Formation mechanism
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In situ X-ray diffraction
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ν = 0.1

ν = 1.0
ac

rc
Cd Zn

K. W. P. Orr, S. M. Collins, E. M. Reynolds, F. Nightingale, H. Boström, S. J. Cassidy, D. Dawson,
S. E. Ashbrook, O. V. Magdysyuk, P. A. Midgley, A. L. Goodwin, H. H.-M. Yeung
Chemical Science 2021, 12, 4494–4502.

xrxn = 0.5

Cd-rich 
nuclei

Zn-rich 
shell

Increasingly 
diffuse interface



Summary
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1. Framework materials
• Topology + chemistry

2. Formation studies
• Capabilities of in-situ experiments
• Extracting quantitative information

3. Case studies
• Lithium tartrate polymorphism
• ZIF-8 non-linear crystallisation
• Zn/Cd-ZIF-8 nanoparticles 5
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The future is more than average

[1] H. Deng, O. Yaghi et al., Science 2010, 327, 846–850.
[2] Adapted from “SpinachRuBisCO.png” under a CC BY-SA 4.0 licence, Wikipedia.org user Ericlin1337.
[3] K. Hirai, S. Kitagawa et al., Angew. Chem. 2011, 50, 8057-8061.

Mixed components[1,2] Bulk structure Phase separation[3]

31Yeung
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